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Abstract: Data from four lightning networks collected during three quasi-linear convective systems
(QLCS) are used to understand the differences in detection for optimizing their combined use.
Additionally, using unique aspects from each network provides a more complete picture of lightning
in a thunderstorm. The four lightning networks examined include a Lightning Mapping Array
(LMA), the Earth Networks Total Lightning Network (ENTLN), the Geostationary Lightning Mapper
(GLM), and the National Lightning Detection Network (NLDN). The data from each network are
inter-matched and locations where each network uniquely detected a flash versus all are analyzed
in reference to three QLCSs, including two QLCSs that occurred in the Southeast (22 March 2022
and 30 March 2022) during the Propagation, Evolution, and Rotation in Linear Systems (PERiLS)
field campaign, and one case from Oklahoma (26 February 2023). Unique aspects of the lightning
provided by each network are examined, including flash initiation altitude, size, type, and energy.
Lightning flash trends and characteristics for each QLCS are similar between networks in general,
but deviate in certain conditions and locations. Times of decreased matching between networks were
associated with localized increases in lightning rates, smaller flash sizes, and lower-energy flashes.
The differences in each network’s performance across the QLCSs demonstrates the importance of
understanding the limitations in each and the advantage of using multiple networks.

Keywords: lightning; QLCS; lightning instrumentation

1. Introduction

Lightning location networks differ in lightning detection method based on observed fre-
quency ranges, the number and location of sensors, and the algorithms used to quantify and
locate lightning [1]. Due to these differences, each network can provide unique information
about not only the lightning itself, but also the supporting meteorological environment. For in-
stance, Lightning Mapping Arrays (LMAs) detect lightning breakdown processes at higher
frequencies and uniquely map lightning channels in 3D [2]. However, they do not map the
channel to ground, have a negative leader detection bias, provide no flash type classification,
and have a substantial drop off in source detection efficiency (DE) with range [3–5]. The National
Lightning Detection Network (NLDN) [6] and the Earth Networks Total Lightning Network
(ENTLN) [7] operate at lower frequencies, allowing for a much larger detection range. These
systems are more sensitive to energetic processes such as return strokes or narrow bipolar events.
They cannot provide 3D detail or spatial extent, but can generally distinguish between cloud-to-
ground (CG) and intra-cloud (IC) lightning [6,8,9]. The Geostationary Lightning Mapper (GLM)
onboard the Geostationary Operational Environmental Satellites (GOES) detects optical light-
ning emissions, including over oceans and places where ground-based sensors are limited [10].
It does not provide altitude information or differentiate CG and IC lightning, although some
work has demonstrated a path to do so (flash type classification [11,12]), (altitude [13]). GLM DE
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can be dampened depending on storm makeup [14,15], flash characteristics (e.g., size, initiation
altitude, type, and duration [16,17]), and the distance from nadir [16,18].

Combining data from multiple networks not only provides a more complete lightning
dataset, but the strengths and weaknesses of each network might be leveraged to signal
information on the storm environment and microphysics. For example, ref. [19] used
the flash type capabilities of NLDN and the 3D mapping of LMAs to calculate more
accurate nitrogen oxide (NOx) amounts, since ICs and CGs produce differing NOx values.
Reference [11] predicted flash types in the GLM data via merging with ENTLN to relate
flash type to hurricane intensification and weakening [20].

Lightning and charge layer characteristics depend on storm updraft and micro-
physics [21–24]. For electrification, rebounding collisions of hydrometeors such as graupel
and ice crystals in the presence of supercooled liquid water need to occur, and the charge
acquired by each hydrometeor is dependent on characteristics such as temperature, liq-
uid water content, rime accretion rate, and relative sizes [25,26]. LMA flash rates have
been parameterized from radar-inferred microphysical and kinematic parameters such as
graupel mass, graupel echo volume, updraft volume, and updraft velocity [27–31]. Past
studies using LMA data have also shown or theorized that stronger updrafts create more
pockets of charge from turbulence and often produce smaller, more numerous flashes,
while less turbulent stratiform regions have larger striated layers of charge that produce
fewer but larger flashes [22,24,32]. Relationships between flash size and rate to updraft
strength are not as clear within other datasets. For instance, ref. [18] demonstrated that
LMA data matched these past findings of smaller flashes and higher flash rates during
stronger updrafts in two Colorado storms and one Alabama storm, but GLM did not
necessarily. The lower altitude and smaller sizes of the Colorado flashes paired with the
off-nadir viewing angle of GLM caused decreased detection and a depressed signature in
flash rates. The normally charged Alabama storm, however, produced similar flash rates
between the two networks. Reference [33] further compared GLM and LMA along with the
International Space Station (ISS)—Lightning Imaging Sensor (LIS), the Atmosphere–Space
Interactions Monitor (ASIM), and radar for a single lightning flash. For the analyzed flash,
GLM most prominently detected return strokes, recoil leader processes, and lightning
leader branching involving new leader development and was affected by the position of
the lightning channel in the cloud as well as the cloud properties above and surrounding
the flash. Thus, the characteristics of flashes viewed by different networks might give
information about the nature of the storm updraft, as well as clues to the broad charge
structure present.

Rapid increases in total lightning (i.e., lightning jump [34–36]) using the LMA often
precede severe criteria including tornadoes [34,36–40]. Lightning jumps in the LMA may
be related to both the updraft volume and increased precipitation mass, which contributes
to downdraft-generated vorticity, which in turn can enhance the low-level mesocyclone
and tornado formation [40,41]. However, if horizontal shearing instability (HSI) is the
mesovortex generation mechanism, then this process would not be observed. Further,
when the lightning jump method is applied to other lightning networks, the relationship
is not as clear. For instance, ref. [42] found that GLM produced more lightning jumps in
general, but these jumps did not consistently correlate to severe weather events, or even
severe storms, producing a false alarm rate greater than 80%. Ref. [43] also found large
false alarm rates with many lightning jumps common in non-severe storms using NLDN
data. Reference [44] further found that NLDN and GLM varied greatly in both lightning
jumps and flash rates depending on storm makeup.

This paper aims to demonstrate the differences between each network and the unique
characteristics of lightning that each network provides. This will be explored using three
quasi-linear convective systems (QLCSs), two sampled during the Propagation, Evolution,
and Rotation in Linear Storms (PERiLS) field campaign [45] and one sampled in Oklahoma,
all with reliable LMA observations. PERiLS was focused on sampling tornadic QLCSs in
the Southeast, with collaboration across several universities and research organizations.
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QLCSs themselves are organized lines of convection that are oriented linearly, often driven
by a frontal passage, and produce a wide variety of severe weather. Minimal research has
been performed on the inter-comparison of lightning network performance within these
systems. QLCSs provide an interesting laboratory for lightning network comparison due
to their large coverage area and the spectrum of flash characteristics and meteorological
processes present within them.

All of the previous discussion supports the fact that (1) lightning characteristics are
intimately related to the storm motions/updraft and microphysics and (2) the lightning
trends presented by each network can differ based on differences in methods of detection
and algorithms and thus cannot be treated generically. This fact is the motivation for
this study, not only to compare and contrast the different networks, but to showcase the
unique information of flashes each network can provide and how this combination reveals
a more complete depiction of storm electrification. Through this study, we seek to answer
the following: What characteristics of flashes in QLCSs make them more likely to be seen by
all networks? It is expected that larger, higher-altitude, and higher-energy flashes during
lower-flash-rate periods are most likely to match between networks. Higher heights and
energies should allow more light to reach cloud top for GLM, larger flashes provide more
branching for overlap between LMA and very-low-frequency (VLF) networks, and lower
flash rates provide more stability in flash sorting algorithms across networks. The QLCS
cases we will be analyzing vary by location, time of day, and charge structure, which can
all influence the observed lightning trends. Anomalous versus normal charge structures,
favored in different locations, affect network performance due to differences in initiation
heights and dominant flash types. Also, network performance is not expected to be uniform
for all regions.

2. Materials and Methods

For this study, four lightning networks are used to gain the full picture of lightning in
each storm. More detail on each network is provided in the following sections.

2.1. Lightning Mapping Array (LMA)

Data were collected from the National Severe Storms Laboratory (NSSL) mobile LMA
and OKLMA. The mobile LMA was deployed as part of PERiLS to study QLCSs. It detects
very-high-frequency (VHF) emissions (60–66 MHz) from lightning and consists of eight
sensors. This frequency range allows for the detection of smaller-scale breakdown processes
such as branching and leader development, allowing for the 3D mapping of lightning. Time-
of-arrival techniques pinpoint radiation source locations, with location errors being tens of
meters within the network bounds and increasing location errors with distance outside the
network [3,4]. The DE of LMA networks within network range is typically greater than 95%,
but decreases quickly outside of 150 km of the network center [3–5,46,47]. To be considered
in this analysis, an LMA source needed to have a maximum reduced chi-squared value
of 1.0 and be detected by six sensors minimum, and the flash needed to be composed
of more than ten sources. LMA sources were grouped into flashes using the lmatools
python package (https://zenodo.org/record/32510, accessed on 20 February 2024), with a
threshold of 3 km and 0.15 s and a maximum flash duration of 3 s.

2.2. Geostationary Lightning Mapper (GLM)

The GLM is an instrument aboard the GOES 16, 17, and 18 that detects optical emission
from lightning escaping cloud top. The GLM is focused on the 777.4 nm wavelength,
a prominent emission line for lightning [48–51]. The spatial resolution of GLM varies from
8 km at nadir to 14 km at the edge of the field of view [52]. The data are classified into
three main classifications: (1) events representing a single illuminated pixel that exceeds
the background threshold, (2) groups encompassing all adjacent pixels that occur in the
same 2 ms timeframe, and (3) flashes consisting of all events/groups that occur within
330 ms temporally and 16.5 km spatially [10]. For large flashes, there can be an unrealistic

https://zenodo.org/record/32510
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splitting due to an upper limit imposed by the Lightning Cluster-Filter Algorithm (LCFA)
of 101 groups in a flash [53]. Since our analysis focuses on QLCSs with large stratiform
regions for lightning to propagate into forming expansive flashes, some flashes were flagged
as reaching this limit. Thus, events and groups comprising flagged flashes are resorted
without an upper limit on the number of groups comprising a flash, similar to [53]. The
overall DE of GLM flashes is estimated to be around 70% [16,54], with fluctuations due
to day versus night sensitivity changes [16,55], storm makeup [15,18], and distance from
GOES nadir [56].

2.3. Earth Networks Total Lightning Network (ENTLN)

The ENTLN is a worldwide lightning detection network operating between 1 and
12 MHz [57]. Sensors are not uniformly distributed worldwide, so DE varies geographi-
cally [58]. ENTLN incorporates the World Wide Lightning Location Network (WWLLN)
into its dataset and has done so since December 2011, helping improve DE over oceans [59].
For ENTLN, pulses are sorted into flashes if they are within 700 ms and 10 km of another
pulse. ENTLN can detect both CG and IC lightning with moderately high accuracy,
especially over CONUS, where the sensor density is higher, with an estimated stroke and
pulse classification accuracy of 86–93% [8,20]. For this analysis, the newest method of
ENTLN flash classification is used, as described in [7].

2.4. National Lightning Detection Network (NLDN)

The NLDN is a ground-based lightning detection network over CONUS with a
>30-year observational record. It operates in the low-frequency (LF) range, detecting
signals created by fast discharges such as return strokes. NLDN is particularly good at
detecting CG flashes, with a DE of 93% with location errors less than 300 m [6,9,60,61].
However, the DE for IC flashes is substantially lower, with estimates around 10% [1,6,62].
NLDN strokes are grouped into flashes for this analysis using the methods described in [6].

2.5. Matching Between Networks

Lightning from each network are inter-matched using a threshold of 30 km and 20 ms,
similar to past matching studies [11,58,63,64]. ENTLN pulses, GLM groups, and NLDN
strokes were matched to LMA sources, and the parent flashes were then subsequently
matched if they contained one or more pulses/groups/strokes that matched. We chose
to match at the pulse level to make sure matches were of the same discharge process.
However, this method of matching will cause lower values for subsequent flash matches,
because although LMA flash detection is >90%, at the pulse level, sources are produced in
the streamer zones at leader tips, whereas VLF or optical are produced by current flowing
in the leader or channel. Thus, we are not calculating a true DE as has been done in the
majority of past lightning network inter-comparison studies, which used flash-to-flash
matching with much larger time criteria for matching (e.g., [54,62,65]). Instead, we acquire
a determination of overlapping processes being detected between networks. An example of
what each network is detecting at the pulse level is shown in Figure 1. In the example, GLM
primarily is matching and detecting the earlier portion of the flash, implying these pulses
are the most optically bright parts of the flash. The majority of ENTLN and NLDN pulses
occur in the western portion of the flash, primarily detecting the most energetic pulses
such as return strokes. LMA is detecting small breakdown processes but not resolving
the large energetic processes like the return strokes that ENTLN and NLDN are detecting
in the southwest region of Figure 1. Further, no networks are matching the extensive
LMA branching later in the flash. Although the example shown in Figure 1 is one LMA
flash, it consists of two GLM flashes, three NLDN flashes, and six ENTLN flashes, further
highlighting the differences in sorting algorithms between networks.
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Figure 1. Example of a lightning flash composed of LMA sources (red circle), ENTLN pulses (green
diamond), NLDN strokes (blue square), and GLM groups (orange triangle). Grey points indicate
unmatched pulses, while colored points indicate matched. This example consists of 2 s of data at
1855 UTC from Case 1.

Since QLCSs can span large distances, some of the furthest sampled QLCS regions are
further than 150 km from the LMA and will have a lower LMA DE and decreased location
accuracy. Thus, we limited the pulse and flash matching to within 100 km of the LMA
network center, where estimated flash detection is 100% (Figure 2).

Figure 2. Spatial plot showing LMA sensor locations (blue dots), flash detection efficiency determined
using the methods of [5], and radar examples for Case 1 (left), Case 2 (middle), and Case 3 (right).
Black circle indicates 100 km range from LMA network center used in matching analysis.

Thermodynamic parameters discussed in the case descriptions such as surface-based
convective available potential energy (SBCAPE), 0–3 km storm relative helicity (SRH),
and equilibrium level (EL) are retrieved from the High-Resolution Rapid Refresh (HRRR)
model and further corroborated with nearby National Weather Service (NWS) soundings
and the Storm Prediction Center Mesoanalysis products (http://catalog.eol.ucar.edu/
perils_2022/analysis, accessed on 20 February 2024).

http://catalog.eol.ucar.edu/perils_2022/analysis
http://catalog.eol.ucar.edu/perils_2022/analysis


Atmosphere 2024, 15, 309 6 of 20

2.6. Cases of Interest

QLCSs are used in this research, since they provide a unique and minimally explored
basis for lightning network comparison due to their large coverage area, large spectrum
of flash characteristics, and large range of meteorological processes present within them.
Three main cases were chosen to allow for reliable sampling of each storm using the LMA.
These cases are described in greater detail in the following sections and basic information
can be found in Table 1.

Table 1. Table showing the dates, times, and locations for each of the three cases of interest.

Case 1 Case 2 Case 3

Date 22 March 2022 30 March–31 March 2022 27 February 2023
Time 1800–2359 UTC 2100–0300 UTC 0100–0400 UTC
Location Mississippi/Alabama Mississippi/Alabama Oklahoma
Network Center (Lat, Lon) 33.125, −88.268 33.632, −88.660 35.271, −97.818

2.6.1. Case 1: 22 March 2022 PERiLS IOP1

Case 1 is a QLCS event sampled on 22 March 2022 in the first year of the PERiLS field
campaign. The QLCS formed over Texas around 0000 UTC on 22 March. As it propagated
east, the QLCS moved into a more favorable environment for development, with higher
SRH and SBCAPE. This case included a variety of storm modes, as evidenced by deep
convection developing in the warm sector ahead of the main frontal band of storms in
eastern Mississippi around 1800 UTC. Eventually, these discrete cells merged with the main
line. Overall features of the Case 1 QLCS include a trailing stratiform region (Figure 2),
average SBCAPE of ∼500 J/kg, EL ∼ 10.4 km, and average 0–3 km SRH of 400 m2/s2. This
QLCS included five tornadoes within the sampling domain along the Mississippi/Alabama
border (Figure 2), a supercell merger with the line, and the most lightning overall out of all
cases (Table 2). The sampling of Case 1 occurred primarily during daytime.

Table 2. Results of matching between networks for all three cases. Columns are the amount of
the network that matched, while rows are the network being matched to. For example, in Case 1,
18,395 ENTLN flashes out of 25,254 total ENTLN flashes had a matching LMA detection. Total flashes
for each network and case are also shown.

LMA ENTLN GLM NLDN

LMA
Case 1 — 18,395 (72.8%) 15,670 (88.3%) 13,760 (72.2%)
Case 2 — 16,415 (79.3%) 15,201 (84.3%) 10,360 (78.3%)
Case 3 — 9732 (80.9%) 8005 (79.7%) 8521 (82.0%)

ENTLN
Case 1 25,798 (51.2%) — 13,725 (77.4%) 17,536 (92.0%)
Case 2 19,151 (48.2%) — 13,419 (74.4%) 11,901 (90.0%)
Case 3 15,167 (61.2%) — 6494 (64.7%) 10,153 (97.7%)

GLM
Case 1 22,923 (45.6%) 17,926 (71.0%) — 12,620 (66.2%)
Case 2 22,109 (55.6%) 16,696 (80.7%) — 10,548 (79.8%)
Case 3 11,807 (47.7%) 8831 (73.4%) — 7035 (67.7%)

NLDN
Case 1 10,989 (21.9%) 14,020 (55.5%) 10,553 (58.8%) —
Case 2 8541 (21.5%) 10,379 (50.2%) 9238 (51.2%) —
Case 3 6611 (26.7%) 6985 (58.1%) 5854 (58.3%) —

LMA Total ENTLN Total GLM Total NLDN Total
Case 1 50,260 25,254 17,730 19,061
Case 2 39,742 20,688 18,042 13,225
Case 3 24,777 12,023 10,041 10,389

2.6.2. Case 2: 30 March 2022 PERiLS IOP2

Case 2 was another active QLCS sampled along the MS/AL border during PERiLS
on 30 March 2022. Similar to Case 1, this QLCS originated in Texas/Oklahoma around
0200 UTC on 30 March, strengthened in Louisiana around 1700 UTC producing several
tornadoes, and continued to produce severe weather as it moved through Mississippi and
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into our study area at 2200 UTC. There were six tornadoes within range of the mobile
LMA network associated with the Case 2 parallel stratiform QLCS passage (Figure 2). Com-
pared to Case 1, the timing of sampling was later in the day, including after-dark measure-
ments, the average SBCAPE values were higher (∼700 J/kg), with similar 0–3 km SRH
(>350 m2/s2) and EL around 10.2 km. Lightning flash rates were overall lower than Case 1.

2.6.3. Case 3: 26 February 2023 Oklahoma

Case 3 was a prominent fast-moving QLCS system that moved through Oklahoma
on 26 February 2023. Storms initiated in the Oklahoma panhandle and western Kansas
around 2300 UTC and were more cellular in nature. As the storms propagated eastward,
they formed into a linear system and moved into the study area, where SRH values
increased rapidly by 0100 UTC on February 27. There were six tornadoes in the study
domain for Case 3. Several of the mobile LMA sensors were deployed to supplement
the permanent OKLMA network during this case. This case contrasts the other cases in
its location and thermodynamic profile, with lower SBCAPE (∼300 J/kg in the domain),
higher average 0–3 km SRH around 600 m2/s2, and a lower EL (∼8.6 km). The QLCS also
had a very limited stratiform region when compared to the other cases and moved quickly
through the domain. Case 3 had the lowest amount of lightning overall and included after-
dark measurements.

2.7. Overall Comparison of Matching between Networks

The amount of flashes matching between networks differs depending on storm loca-
tion/evolution and network (Table 2). Matching was similar for Cases 1 and 2, with LMA
flashes matching best to GLM flashes, followed by ENTLN and NLDN. NLDN had the highest
overlap with ENTLN, which is reasonable since ENTLN and NLDN have similar methods of
detection. ENTLN, however, had the highest percentage matched to GLM and LMA. GLM
matching to LMA decreases from around 84–88% for Cases 1 and 2 to 79% for Case 3. This
lower fraction of matched flashes is possibly partially due to an off-nadir viewing angle
decreasing the GLM’s ability to detect lower-energy flashes in Oklahoma [56]. Contrarily,
ENTLN and NLDN have an increase in percentage matched for Case 3 and have the lowest
percentage matched to LMA for Case 1, implying a different flash population is likely playing a
role in the differences between cases. Since we are matching at the source/pulse/stroke/group
level, matching between networks not being 100% supports the notion that these networks are
recording different processes. The overall totals further show this difference, with moderate
variations in the number of flashes between networks across cases (Table 2). Through all these
observed differences, each network provides another piece of the lightning puzzle.

3. Results

Analysis of the number of flashes matching to a unique LMA flash shows the overall
matching is closest to 1 (Table 3), due to the large majority of LMA flashes being very
small. There are, however, differences between the average number of flashes matching
to a single LMA flash between networks. For instance, ENTLN had a higher average
number matched across all cases when compared to NLDN and GLM, with a range of
1.24–1.51 flashes matching to each LMA flash. It also had the highest number matched to
one flash, with nine ENTLN flashes matching to one LMA flash in Case 2. NLDN had
the lowest average number of flashes matched to an LMA flash across cases, with a range
of 1.01–1.03. This could in part be a result of the lower number of flashes present in the
NLDN dataset compared to ENTLN (totals shown in Table 2). NLDN detects CGs very well,
but is not geared towards detection of small IC pulses and flashes [6]. Thus, there are fewer
pulses (and flashes) to match to, with the primary strokes being CG, which is less likely
to match to LMA-detected processes. Additionally, the two networks differ in their flash
sorting criteria, with NLDN having a smaller temporal bound overall and larger spatial
bound for ICs than ENTLN (NLDN: 500 ms and 10 km for CGs, 20 km for ICs [6] versus
ENTLN: 700 ms and 10 km [29]) which can contribute to differences in the flash totals.
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GLM is the middle ground of the networks, with the average number of flashes matched to
a single LMA flash between 1.04 and 1.17. Case 3 had a clear drop in the mean number of
flashes matched to each LMA flash, supporting the notion that GLM is not detecting small,
less-energetic IC groups (and flashes) for Case 3 due to the off-nadir viewing angle [56].

Table 3. Max and mean number of flashes that matched to a single LMA flash for each network and Case.

Sensor
Case 1 Case 2 Case 3

Max Mean Max Mean Max Mean

ENTLN 5 1.24 9 1.31 6 1.51

NLDN 7 1.01 5 1.03 3 1.01

GLM 6 1.17 6 1.12 5 1.04

Through matching networks to the LMA, we can explore the characteristics of flashes
that overlap and those that do not (Figure 3). For Case 1, the matched flashes are on
average larger than the unmatched flashes across all networks (27 km2 for matched versus
13 km2 for unmatched). For altitude, there is a minimal difference between matched and
unmatched flashes, with both having an average value around ∼8.3 km. Overall, Case 1
has the highest average flash initiation altitudes out of all cases. Recall that GLM had the
highest percent matched to LMA flashes for Case 1, while ENTLN and NLDN had their
lowest percentage matched in Case 1, which could imply that height is a bigger factor for
GLM detection/matching than the other networks. Flash areas show a clearer difference
between matched and unmatched LMA flashes, with matched flashes having an average
flash area of 25 km2, while unmatched LMA flashes had an average value of 11.6 km2.
Additionally, ENTLN matched to the smallest flash areas out of all networks (21.5 km2).

Similar matching trends between networks occur in Case 2, but with much larger average
flash areas than Case 1 and lower altitudes. The Case 2 peak matching occurs at ∼40 km2

in area and 7.5 km in height. As in Case 1, there is very little variation in matching trends
with height for GLM, NLDN, and ENTLN. There is also a small peak in unmatched flashes
at ∼4 km, implying that a population of lower-altitude flashes are not matching. Similar to
Case 1, unmatched flashes are smaller than matched flashes, with an average flash area for
unmatched LMA flashes of 16.8 km2. Additionally, for Case 2, NLDN is matching to larger
flashes on average than ENTLN or GLM. This matches up with the fact that NLDN had
decreased flash detection in Case 2, implying it is not seeing smaller flashes.

A bigger change in matching occurs in Case 3. Initiation altitudes are the lowest in
height and there is a clear difference in the matched versus unmatched heights. There
is also a big difference in matched versus unmatched areas, with larger LMA flashes
(average between 40 and 55 km2) more likely matched, while unmatched LMA flashes
were substantially smaller (16 km2). GLM is clearly matching to larger flashes than NLDN
or ENTLN, with a median flash area of 56.0 km2. This is potentially due in part to the
location of Case 3 being further from GLM nadir (Oklahoma versus Mississippi/Alabama),
causing smaller lower-energy flashes not to be detected [56]. For altitude, all networks
have nearly identical matching patterns, with a peak at ∼6.5 km. This altitude is lower
than other cases, which may also contribute to GLM having a lower DE, although the EL
was also lower in height for this case. Unmatched flashes are on average lower in altitude
(5.7 km) and there is a lack of a lower secondary maximum in altitude, implying a different
charge arrangement than the first two cases. This agrees with past findings analyzing
differences in flash altitudes regionally, where regions like Oklahoma and Colorado often
had lower average flash initiation heights than Southeastern storms [14,46]. This difference
is often attributed to anomalously charged storms, which are more common in the Great
Plains region. The average temperature where the most flashes are initiating also supports
an anomalous charge structure for Case 3, with the peak for Case 3 sitting at −14 ◦C
based on the nearest NWS soundings, whereas Case 1 and Case 2 peak at around −30 ◦C,
matching the respective temperature peaks for anomalously and normally charged storms
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in [14]. Overall, the height is a bigger factor in matching between network for Case 3 than
Case 1 or 2.

Figure 3. Characteristics of the LMA flashes that were matched to ENTLN (green), GLM (yellow),
NLDN (blue), and unmatched LMA flashes (grey) including initiation height (top) and flash area
(bottom) for Case 1 (left), Case 2 (middle), and Case 3 (right). Mean/median values for each network
and case are also shown below. In violin plot, black solid line is the median, and dotted lines are the
25th and 75th percentiles.

We also compare flash characteristics unique to each network for unmatched versus
matched flashes (Figure 4). As a reminder, if multiple GLM/NLDN/ENTLN flashes match to
an LMA flash, the characteristics of all of them are included in the matched dataset. Energies
for matched and unmatched flashes differ between cases, networks, and flash types (Figure 4).
When discussing amplitudes and polarities of flashes, we use the nomenclature described
in [66], where, for example, an IC flash propagating from the lower negative to the upper
positive charge region is considered a positive (+) IC and the opposite negative (-). For ENTLN,
there are two main peaks of negative and positive amplitudes among matched IC flashes in
Case 1, with +ICs more likely to be matched. These two peaks are also present for unmatched
ICs, but with a larger peak in -IC amplitudes. Case 2 also has two main peaks, with similar
distributions of positive and negative matched versus unmatched ICs as Case 1. Case 3 has
a completely different amplitude pattern, with very few +ICs occurring at all. On average,
larger-amplitude IC flashes matched better to LMA flashes. CGs for Cases 1 and 2 have similar
patterns, with a larger portion of +CGs matching to LMA flashes, while unmatched ENTLN
flashes are predominantly negative. It has been shown that there is frequently a spurt of
in-cloud negative leader growth seen immediately following a +CG stroke [67], which would
result in matching between VLF networks and LMA using our criteria. The LMA will not see
the channel to ground, but it will see the in-cloud bloom. For Case 3, very few +CGs occur,
and -CGs are lower-amplitude on average than Cases 1 and 2. Overall, the matched versus
unmatched flash amplitudes for Case 3 are indistinguishable.
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Figure 4. Characteristics of unmatched (left lighter colors) and matched (right darker colors) flashes
to LMA for IC and CG amplitudes of ENTLN (green) and NLDN (blue); GLM (yellow) energies and
footprints for Case 1, Case 2, and Case 3. Mean/median values for each network and case are shown
in the table below. In violin plot, the black solid line is the median, and dotted lines are the 25th and
75th percentiles.

NLDN amplitudes are very similar between Cases 1 and 2 for CGs and ICs (Figure 4).
Unlike ENTLN, the main peak for ICs is composed of small positive-amplitude flashes,
with very few small-amplitude -ICs present and more higher-amplitude ICs than ENTLN.
Case 3, however, is very similar to ENTLN, with most of the matched and unmatched
ICs being negative. CGs also have larger amplitudes than ENTLN flashes for all cases.
Similar to ENTLN, +CGs are more likely to be matched to LMA. Interestingly, the majority
of CGs for Case 3 were predominantly negative, which is the opposite of what is typically
observed in past studies of anomalous storms [68–71]. However, the majority of these past
studies were isolated storms, and charge structures in QLCSs are much more complicated.
The predominant number of -CGs in this case could be partially due to biases in the classifi-
cation algorithms of both ENTLN and NLDN favoring negative flashes to be classified as
CGs, since -CGs are much more common on average compared to -ICs.

Flash energies for GLM are larger in Cases 1 and 2 (∼54 fJ) and smallest for Case 3
(∼38 fJ), similar to ENTLN and NLDN amplitudes (Figure 4). Matched flashes have larger
energy values than unmatched flashes across all cases, although the difference is small.
GLM flash footprints in Cases 1 and 2 follow a similar pattern as the flash energy, with
unmatched flashes being smaller (140 and 207 km2) than matched flashes (209 and 277 km2,
respectively) across cases. However, the flash areas in Case 3 are on par with the other
two cases and there is no clear difference between matched versus unmatched flash areas,
which differs from the smaller energy values for Case 3. The difference between Case 1 and
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Case 2 GLM flash characteristics versus Case 3 is possibly due to a combination of location
(off-nadir viewing angle for GLM in Oklahoma [56]) and charge structure (anomalous
charge, lower initiation heights, smaller cloud depth [46]); however, Case 3 also occurred
after dark, which would have a positive effect on GLM flash detection. Off-nadir viewing
would cause the smallest of flashes not to be detected, since they would not overcome the
GLM energy threshold for detection, which would increase the upper bound for small
flashes to match, matching the absence of smaller GLM flash areas in Case 3, and the larger
LMA flash areas to be matched to GLM versus ENTLN and NLDN. Adding to this is the
possibility that the flashes themselves are smaller due to the difference in charge structures
between the cases, further enhancing this effect.

3.1. Example Snapshots for Inter-Comparison of Network Performance

To get a better idea of what is happening at times when networks do and do not
quite match up, we examine a few of those times in detail. The first example showcases a
time where detection between networks was similar, but matching was low in one section
and higher in the other. The second example demonstrates a time where the opposite is
true: the detection between networks varied greatly, but the matching to LMA was high.
Lastly, the third example shows a time where networks had both similar detection amongst
networks and high matching to the LMA.

3.1.1. Example 1: 27 February 2023, 0315 UTC

0315 UTC in Case 3 was an active severe time period for the QLCS, with several torna-
does ongoing. In this example, there is variation across the sampled region of the QLCS
in not only the amount of lightning each network is detecting, but also in the matching
between networks. To inter-compare differences between areas of higher matching between
networks versus lower matching, we will be focusing on two areas of the QLCS, termed the
left region and right region. There is a prominent decrease in matching for the left region
and higher matching in the right region (Figure 5). The decrease in matching of flashes
to LMA flashes in the left region is present across all networks, with the most prominent
signature present for the NLDN and GLM. The percentages of GLM, ENTLN, and NLDN
flashes that had a corresponding LMA flash match in the left region are 40.8%, 83.1%,
and 43.9%, respectively, and 96.8%, 98.7%, and 97.9%, respectively, for the right region.
ENTLN and NLDN detect more flashes in the left region (346 and 300 flashes) versus the
right region (243 and 242 flashes, respectively). The LMA, however, reports substantially
more flashes in the right region versus the left region (1310 versus 313 flashes, respectively).
The GLM has similar trends to the LMA, but more muted, with more flashes occurring
in the right region versus the left (267 versus 213 flashes, respectively). Overall, the left
region has more variation in flash rates and locations between networks, with more spread
location-wise in the ENTLN data.

There are clear differences in the LMA flash characteristics between the two regions,
as shown in the violin plots in Figure 5. The right region has much larger flashes in general,
with an average flash area of nearly 60 km2, while the left region has an average flash area
of less than 25 km2. LMA flash altitudes also differed, with higher average flash initiation
altitudes in the left region versus the right (6.5 versus 5 km, respectively). One potential
contributor to the lower matching in the left region is its distance being further from the
network center, causing decreased detection by the LMA. This is further supported by the
lower number of LMA flashes in the left region. However, the GLM flash characteristics
show that the flash populations are inherently different, meaning the distance from the LMA
network center is not the only reason for decreased matching between networks. Similar
to the LMA, GLM flashes in the right region are larger than the left region, with average
flash areas being approximately 300 versus 210 km2, respectively. Additionally, GLM flash
energies are also larger in the right region (70 fJ) versus the left region (25 fJ). The larger,
more energetic flashes in the right region support better matching between networks (and



Atmosphere 2024, 15, 309 12 of 20

better detection for GLM), since larger flashes provide more opportunity for overlap of
processes detected between networks.

Figure 5. Example of a time where lightning networks differ. Time of example is 0315 UTC on
27 February 2023. Contoured percentages of flashes matched for each network (left) and violin plots
(right) of flash characteristics unique to each network comparing the right and left region where
matching between networks differed for each network are shown. Flash totals for each region are
also displayed in the upper-left of the spatial plots.

NLDN and ENTLN provide flash type and polarity information between the two
regions. The majority of flashes, according to NLDN, are IC in both regions (left:245,
right:205), with a larger amount of both IC and CG flashes present in the left region.
Although the amount of CG flashes is less in the right region (left:55, right:37), the spread
in CG amplitude is higher, implying larger-amplitude flashes are occurring. The ENTLN
flash type and amplitude tell a slightly different story than NLDN. The majority of flashes
in the left and right region are IC (left:253, right:160), with a higher proportion of the
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lightning being IC in the left region. However, CG flash counts are comparable between
the two regions (left:93, right:83). There is also less spread in amplitude values than NLDN,
with positive ICs being slightly more common for the left region than the right.

3.1.2. Example 2: 22 March 2022, 1900 UTC

In this example, the QLCS was at a lull in severe development after having produced
numerous tornadoes in western Mississippi, with no ongoing tornadoes when compared to
the first example. We view lightning from a different perspective via cross sections through
a portion of the QLCS in this example (Figure 6). There is large variation in the amount of
lightning each network is detecting. Similar to Example 1, the LMA detects nearly triple
all other networks at this time (maximum flash rate of ∼400 flashes per five minutes),
with ENTLN having the second-highest flash rates (∼130 flashes per five minutes). GLM
has decreased detection compared to other networks, with values less than half of ENTLN
and even further from LMA flash rates (∼65 flashes per five minutes). NLDN also has
lower flash rates (∼85 flashes per five minutes), which differs from Example 1, where
NLDN and ENTLN were more aligned. Although flash rates were lower across networks,
the percentage of flashes with an LMA match was higher than the overall average for the
QLCS, with 84.6% of ENTLN flashes, 84.4% of NLDN flashes, and 91.9% of GLM flashes
having a corresponding LMA match. This differs from Example 1, where matching was
substantially lower than the QLCS average. Thus, Example 1 had more variation in the
unique flash processes being detected by each network, whereas Example 2 has a larger
variation in the amount of lightning detected by each individual network, but the processes
that were detected were more aligned.

Figure 6. Example of a time where lightning networks differ. Time of example is 1900 UTC on
22 March 2022. Contoured flash rates for each network (left) and cross sections through the QLCS
(middle) for each network are shown, as well as the overall location of the cross sections in the
QLCS (right).

Looking at the flash characteristics, most flashes occur in a narrow area in distance
and altitude (between 5–10 km). Compared to Example 1, the altitudes are on average
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higher in this example (8 km versus 5–6 km). The flash rates also peak just to the east of the
reflectivity peak. A decent proportion of the LMA flashes are small (<10 km2), and nearly
half of the GLM flashes are relatively small (<200 km2). Similar to Example 1, ENTLN
shows that the majority of flashes are IC, and NLDN flash types are in agreement. Looking
at amplitude, the majority of flashes are low-current events (<15 kA), which supports both
NLDN and GLM not recording these flashes.

The combination of small IC flashes occurring in a small region co-located with en-
hanced reflectivity is a recipe for decreased GLM DE. GLM detects optical emission from
space, so higher-current, larger flashes that occur higher in altitude are more likely to emit
enough light to escape cloud top and be luminous enough to overcome the GLM back-
ground threshold. GLM struggles to detect short-duration ICs [16] and flashes occurring
within strong reflectivity cores [72], which cause more scattering and absorption of light
as it travels to cloud top [15]. The relatively high flash rates (over 300 flashes per 5 min)
occurring in a compact area could be another ingredient in the decreased GLM DE at this
time. Numerous flashes occurring close in distance and time can be combined into one flash
for GLM, thus decreasing flash rates [73]. Similar to GLM, NLDN is not geared towards
detecting small-amplitude ICs, and this pattern of higher reflectivity aloft appears to be
often associated with decreased DE of flashes for NLDN throughout our analysis. Larger
reflectivity values aloft imply a vigorous updraft lofting hydrometeors and formation of
small pockets of charge supporting small but numerous ICs [22].

3.1.3. Example 3: 22 March 2022, 2150 UTC

Similar to Example 2, 2150 UTC was a time during the QLCS in between the most
intense severe weather producing periods, with no ongoing tornadoes in the study area at
this time. Compared to Example 2, the QLCS was weaker at this time, with lower maximum
reflectivity values. Flash rates across networks are much more in-line with one another than
in Example 2, although they do not match perfectly, which is expected due to differences
in flash detection and sorting methods between sensors. The LMA has a maximum flash
rate of ∼120 flashes per five minutes, with GLM having the second-highest maximum flash
rate of ∼65, followed by ENTLN (∼54) and NLDN (∼42). The percentage of flashes that
had an LMA match in each network were 97.7% for GLM, 98.1% for ENTLN, and 98.2% for
NLDN, most closely matching the right region in Example 1.

In this example, high reflectivity values do not extend as high in altitude compared
to Example 2 (Figure 7). LMA flash sizes are predominantly >10 km2 and span a large
array of initiation altitudes (3–11 km). Flash peaks are also more in-line with the reflectivity
core compared to the prior example time. The majority of GLM flashes are also large
(>200 km2), the opposite of Example 2. ENTLN flashes contain a large percentage of CGs,
and the CG peak lags behind (to the west of) the IC peak. NLDN has a smaller proportion
of CGs than ENTLN, but matches the pattern of the CG peak occurring to the west of the
IC peak.

Overall, larger, more dispersed flashes with a larger percentage of CGs in the ENTLN
data occurred at this time when compared to the first two examples, indicating higher-
current flashes, which are better detected by GLM, NLDN, and ENTLN. Having the higher
reflectivity values confined to lower levels also aids in the ability of optical emission to
reach cloud top and not be as greatly scattered or absorbed while traveling through the
cloud. This is especially true since the lightning is primarily occurring above the reflectivity
core, and the direction light is brightest will favor the direction of greatest mean free path
and lesser concentration [15].
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Figure 7. Same as Figure 6, but an example of a time where lightning networks match well. Time of
example is 2150 UTC on 22 March 2022.

4. Discussion and Conclusions

This study compared four lightning networks to determine the differences in the
lightning detected by each during QLCSs and to showcase the unique information provided
by each network to produce more complete information about the lightning than one
network could provide alone. Through this analysis, the following results were found:

• Lightning flash trends and characteristics for each case were similar between networks in
general, but deviated in certain conditions and locations: Overall matching between
networks showed moderate overlap in the matching of flashes between networks,
with the highest matching between ENTLN and NLDN, which suggests ENTLN
and NLDN are detecting the same processes (current flowing in the leader). It was
also found that GLM is the most likely to detect the same processes as the LMA
out of the networks analyzed. This is most likely in part due to small IC processes
occurring high in altitude being detected by the GLM. However, the fact that GLM
had higher matching to LMA than to ENTLN or NLDN is counter-intuitive, since
processes involving current flow would be expected to produce optical emission more
prominently than leader tip processes detected by the LMA. The path and strength
of optical emission from lightning in a cloud is a complicated problem involving the
channel location and shape in the cloud, the strength of the flash current, as well as
the microphysical makeup of the cloud. Additionally, a high matching fraction could
happen with a very low DE, where GLM would only be detecting the brightest things,
i.e., the most likely to match. Conversely, a low matching fraction could indicate a
high FAR, or it could indicate a network is locating lightning that the LMA does not.
Variations in charge structure are expected across a QLCS [21], so it follows that flash
rates and characteristics would also differ. Case 1 had the highest LMA altitudes on
average (8.4 km), followed by Case 2 (7.7 km), with the lowest for Case 3 (6.1 km). This
matches the lower SBCAPE values present in Case 3 causing less-vigorous updrafts,
lower EL heights, and a lower region of charge in altitude. LMA and GLM flash sizes
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were smallest for Case 1 and largest for Case 3. However, GLM flash energy values
were lowest for Case 3. The smaller GLM flash energies and lack of small footprints for
Case 3 are likely due to a combination of off-nadir viewing angle causing less-energetic
pixels to drop off, which would decrease the overall flash energies and increase the
lower bound of flash footprints [56]. Additionally, flashes initiating on average lower
in the cloud in Case 3 will cause less light to escape cloud top [74].
For Cases 1 and 2, the -ICs ENTLN detects are not present in NLDN. Potentially, one
of the network algorithms could be mis-classifying the IC polarity, but it is hard to
determine if this is the case. -IC flashes are typically less common than +ICs due to
the most common charge structure supporting propagation of IC leaders upward from
negative charge to the upper positive [75], so the large portion of -ICs in the ENTLN data
is curious. Additionally, the amplitude is on average smaller for ENTLN when compared
to NLDN across all cases. NLDN and ENTLN agreed the most during Case 3, with
both detecting predominantly negative flashes, both CG and IC. This varies from typical
anomalous storms, where +CGs often dominate. The charge structure in Case 3 stays
confined to lower altitudes and has a dipolar structure, similar to the initial anomalous
charge structure observed in [76]. SBCAPE and EL were low for this case (<300 J/kg and
8.6 km, respectively), so charged hydrometeors were not lofted as high as other cases.
In general, the change from +ICs to -ICs in both NLDN and ENTLN could potentially
be used as a signal for anomalous charge structure, but more cases would need to be
analyzed to confirm this hypothesis. Just as +CGs are often more common in anomalous
storms, it follows that -ICs would also be more common. This signature has been shown
in a recent study to be present in several anomalous storms [77]. Additionally, -ICs are
higher amplitude for Case 3, while -CGs are smaller amplitude. Overall, the differences
in each network’s performance across the three cases demonstrates the importance of
understanding limitations in each and the advantage of using multiple networks.

• Flash rates among networks were more likely to align in areas of lower flash rates, larger
flashes, more dispersed in location, and fewer ICs: This finding corroborates past research
showing that larger flashes and CGs were better aligned between LMA and GLM [16].
Time periods with higher flash rates cause more variability in flash sorting algorithms
than less prolific flash rates, since numerous flashes occurring close in time may be
sorted into one flash in some networks and multiple flashes in others [73]. Areas with
lower flash rates are often associated with lower reflectivity values, which implies
fewer hydrometeors are present to scatter or absorb light, making detection easier
for GLM specifically. Additionally, these stratiform areas can produce larger, higher-
current flashes, which are well-detected by ENTLN, NLDN, and GLM.
Smaller flashes, on the other hand, are usually less energetic and thus may not be
detected by all networks. ICs are typically smaller and make up a large portion of
flashes during times of high flash rates. Turbulent eddies caused by strong updrafts
create pockets of charge that support smaller, more numerous flashes and more
ICs [22]. These small IC flashes often have decreased detection by ENTLN, NLDN,
and GLM. Thus, times of the most severe weather will often have the most variety in
lightning network performance.

This study ultimately provides inter-comparison of four different lightning networks,
how they vary with QLCSs, and theories and discussion of why these variations may occur.
In this study, we have shown that the networks do have differences and that some of
these differences appear to be related to properties of both the lightning and the storms
themselves. We postulate that it should therefore be possible to leverage these differences to
improve near-term storm behavior prediction. Overall, more cases will need to be analyzed
to see if the trends found in this study hold true. These results provide motivation for
further study of lightning network merging and performance in different events, regions,
and meteorological processes.
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CAPE Convective Available Potential Energy
SRH Storm Relative Helicity
EL Equilibrium Level

References
1. Cummins, K.L.; Murphy, M.J. An Overview of Lightning Locating Systems: History, Techniques, and Data Uses, With an In-Depth

Look at the U.S. NLDN. IEEE Trans. Electromagn. Compat. 2009, 51, 499–518. [CrossRef]
2. Rison, W.; Thomas, R.J.; Krehbiel, P.R.; Hamlin, T.; Harlin, J. A GPS-based three-dimensional lightning mapping system: Initial

observations in central New Mexico. Geophys. Res. Lett. 1999, 26, 3573–3576. [CrossRef]
3. Thomas, R.J.; Krehbiel, P.R.; Rison, W.; Hunyady, S.J.; Winn, W.P.; Hamlin, T.; Harlin, J. Accuracy of the Lightning Mapping Array.

J. Geophys. Res. Atmos. 2004, 109, D14207. [CrossRef]
4. Koshak, W.J.; Solakiewicz, R.J.; Blakeslee, R.J.; Goodman, S.J.; Christian, H.J.; Hall, J.M.; Bailey, J.C.; Krider, E.P.; Bateman, M.G.;

Boccippio, D.J.; et al. North Alabama Lightning Mapping Array (LMA): VHF Source Retrieval Algorithm and Error Analyses.
JAOT 2004, 21, 543–558. [CrossRef]

5. Chmielewski, V.C.; Bruning, E.C. Lightning Mapping Array flash detection performance with variable receiver thresholds.
J. Geophys. Res. Atmos. 2016, 121, 8600–8614. [CrossRef] [PubMed]

6. Murphy, M.; Cramer, J.; Said, R. A Recent History of Upgrades to the U.S. National Lightning Detection Network. J. Atmos.
Ocean. Technol. 2021, 38, 573–585. [CrossRef]

7. Zhu, Y.; Stock, M.; Lapierre, J.; DiGangi, E. Upgrades of the Earth Networks Total Lightning Network in 2021. Remote Sens. 2022,
14, 2209. [CrossRef]

8. Zhu, Y.; Rakov, V.A.; Tran, M.D.; Stock, M.G.; Heckman, S.; Liu, C.; Sloop, C.D.; Jordan, D.M.; Uman, M.A.; Caicedo, J.A.; et al.
Evaluation of ENTLN performance characteristics based on the ground-truth natural and rocket-triggered lightning data acquired
in Florida. J. Geophys. Res. Atmos. 2017, 122, 9858–9866. [CrossRef]

https://doi.org/10.26023/R0K6-AXR5-YZ00
https://doi.org/10.15763/DBS.OKLMA
https://doi.org/10.15763/DBS.OKLMA
https://get.earthnetworks.com/contactus
https://www.avl.class.noaa.gov/
https://www.avl.class.noaa.gov/
https://www.vaisala.com/en/lp/request-vaisala-lightning-data-research-use
https://registry.opendata.aws/noaa-hrrr-pds/
http://doi.org/10.1109/TEMC.2009.2023450
http://dx.doi.org/10.1029/1999GL010856
http://dx.doi.org/10.1029/2004JD004549
http://dx.doi.org/10.1175/1520-0426(2004)021<0543:NALMAL>2.0.CO;2
http://dx.doi.org/10.1002/2016JD025159
http://www.ncbi.nlm.nih.gov/pubmed/27867785
http://dx.doi.org/10.1175/JTECH-D-19-0215.1
http://dx.doi.org/10.3390/rs14092209
http://dx.doi.org/10.1002/2017JD027270


Atmosphere 2024, 15, 309 18 of 20

9. Zhu, Y.; Rakov, V.A.; Tran, M.D.; Nag, A. A study of National Lightning Detection Network responses to natural lightning based
on ground truth data acquired at LOG with emphasis on cloud discharge activity. J. Geophys. Res. Atmos. 2016, 121, 14651–14660.
[CrossRef]

10. Goodman, S.J.; J.Blakeslee, R.; Koshak, W.J.; Mach, D.; Bailey, J.; Buechler, D.; Carey, L.; Schultz, C.; Bateman, M.; McCaul, E., Jr.;
et al. The GOES-R Geostationary Lightning Mapper (GLM). El Sevier 2013, 125-126, 34–49.

11. Ringhausen, J.S.; Bitzer, P.M. An In-Depth Analysis of Lightning Trends in Hurricane Harvey Using Satellite and Ground-Based
Measurements. J. Geophys. Res. Atmos. 2021, 126, e2020JD032859. [CrossRef]

12. Koshak, W.; Peterson, H.; Biazar, A.; Khan, M.; Wang, L. The NASA Lightning Nitrogen Oxides Model (LNOM): Application to
air quality modeling. Atmos. Res. 2014, 135–136, 363–369. [CrossRef]

13. Peterson, M.; Light, T.E.L.; Mach, D. The illumination of thunderclouds by lightning: 3. Retrieving optical source altitude. Earth
Space Sci. 2021, 9, e2021EA001944. [CrossRef] [PubMed]

14. Fuchs, B.R.; Rutledge, S.A.; Dolan, B.; Carey, L.D.; Schultz, C. Microphysical and Kinematic Processes Associated With Anomalous
Charge Structures in Isolated Convection. J. Geophys. Res. Atmos. 2018, 123, 6505–6528. [CrossRef] [PubMed]

15. Brunner, K.N.; Bitzer, P.M. A First Look at Cloud Inhomogeneity and Its Effect on Lightning Optical Emission. Geophys. Res. Lett.
2020, 47, e2020GL087094. [CrossRef]

16. Zhang, D.; Cummins, K.L. Time Evolution of Satellite-Based Optical Properties in Lightning Flashes, and its Impact on GLM
Flash Detection. J. Geophys. Res. Atmos. 2020, 125, e2019JD032024. [CrossRef]

17. Lang, T.J.; Ávila, E.E.; Blakeslee, R.J.; Burchfield, J.; Wingo, M.; Bitzer, P.M.; Carey, L.D.; Deierling, W.; Goodman, S.J.; Medina,
B.L.; et al. The RELAMPAGO Lightning Mapping Array: Overview and Initial Comparison with the Geostationary Lightning
Mapper. J. Atmos. Ocean. Technol. 2020, 37, 1457–1475. [CrossRef]

18. Rutledge, S.A.; Hilburn, K.A.; Clayton, A.; Fuchs, B.; Miller, S.D. Evaluating Geostationary Lightning Mapper Flash Rates Within
Intense Convective Storms. J. Geophys. Res. Atmos. 2020, 125, e2020JD032827. [CrossRef]

19. Mecikalski, R.M.; Bitzer, P.M.; Carey, L.D. Why Flash Type Matters: A Statistical Analysis. Geophys. Res. Lett. 2017, 44, 9505–9512.
[CrossRef]

20. Ringhausen, J.S.; Bitzer, P.M.; Koshak, W.J.; Mecikalski, J. Classification of GLM Flashes Using Random Forests. Earth Space Sci.
2021, 8, e2021EA001861. [CrossRef]

21. Stolzenburg, M.; Rust, W.D.; Smull, B.F.; Marshall, T.C. Electrical structure in thunderstorm convective regions: 1. Mesoscale
convective systems. J. Geophyisical Res. 1998, 103, 14059–14078. [CrossRef]

22. Bruning, E.C.; MacGorman, D.R. Theory and Observations of Controls on Lightning Flash Size Spectra. J. Atmos. Sci. 2013,
70, 4012–4029. [CrossRef]

23. Calhoun, K.M.; MacGorman, D.R.; Dowell, D.C. Numerical Simulations of Lightning and Storm Charge of the 29–30 May
2004 Geary, Oklahoma, Supercell Thunderstorm Using EnKF Mobile Radar Data Assimilation. Montly Weather. Rev. 2014,
142, 3977–3997. [CrossRef]

24. Brothers, M.D. Investigating the Relative Contribution of Charge Deposition in Organizing Charge within a Thunderstorm; American
Meteorological Society: Boston, MA, USA, 2017.

25. Takahashi, T. Riming Electrification as a Charge Generation Mechanism in Thunderstorms. J. Atmos. Sci. 1978, 35, 1536–1548.
[CrossRef]

26. Saunders, C.P.R. Thunderstorm electrification laboratory experiments and charging mechanisms. J. Geophys. Res. Atmos. 1994,
99, 10773–10779. [CrossRef]

27. Deierling, W.; Peterson, W.A. Total lightning activity as an indicator of updraft characteristics. J. Geophyiscal Res. Atmos. 2008,
113, D16210. [CrossRef]

28. Carey, L.D.; Rutledge, S.A. The Relationship between Precipitation and Lightning in Tropical Island Convection: A C-Band
Polarimetric Radar Study. Mon. Weather. Rev. 2000, 128, 2687–2710. [CrossRef]

29. Liu, C.; Cecil, D.J.; Zipser, E.J.; Kronfeld, K.; Roberston, R. Relationships between lightning flash rates and radar reflectivity
vertical structures in thunderstorms over the Tropics and Subtropics. J. Geophyiscal Res. Atmos. 2012, 117, D06212. [CrossRef]

30. Carey, L.D.; Schultz, E.V.; Schultz, C.J.; Deierling, W.; Peterson, W.A.; Bain, A.L.; Pickering, K.E. An Evaluation of Relationships
between Radar-Inferred Kinematic and Microphysical Parameters and Lightning Flash Rates in Alabama Storms. Atmosphere
2019, 10, 796. [CrossRef]

31. Basarab, B.M.; Rutledge, S.A.; Fuchs, B.R. An improved lightning flash rate parameterization developed from Colorado DC3
thunderstorm data for use in cloud-resolving chemical transport models. J. Geophyiscal Res. Atmos. 2015, 120, 9481–9499.
[CrossRef]

32. Calhoun, K.M.; MacGorman, D.R.; Ziegler, C.L.; Biggerstaff, M.I. Evolution of Lightning Activity and Storm Charge Relative to
Dual-Doppler Analysis of a High-Precipitation Supercell Storm. Montly Weather. Rev. 2013, 141, 2199–2223. [CrossRef]

33. Montanyà, J.; López, J.A.; Rodriguez, C.A.M.; van der Velde, O.A.; Fabró, F.; Pineda, N.; Navarro-González, J.; Reglero, V.;
Neubert, T.; Chanrion, O.; et al. A simultaneous observation of lightning by ASIM, Colombia-Lightning Mapping Array, GLM,
and ISS-LIS. J. Geophys. Res. Atmos. 2021, 126, e2020JD033735. [CrossRef]

34. Gatlin, P.N.; Goodman, S.J. A Total Lightning Trending Algorithm to Identify Severe Thunderstorms. J. Atmos. Ocean. Technol.
2010, 27, 3–22. [CrossRef]

http://dx.doi.org/10.1002/2016JD025574
http://dx.doi.org/10.1029/2020JD032859
http://dx.doi.org/10.1016/j.atmosres.2012.12.015
http://dx.doi.org/10.1029/2021EA001944
http://www.ncbi.nlm.nih.gov/pubmed/35865262
http://dx.doi.org/10.1029/2017JD027540
http://www.ncbi.nlm.nih.gov/pubmed/30416910
http://dx.doi.org/10.1029/2020GL087094
http://dx.doi.org/10.1029/2019JD032024
http://dx.doi.org/10.1175/JTECH-D-20-0005.1
http://dx.doi.org/10.1029/2020JD032827
http://dx.doi.org/10.1002/2017GL075003
http://dx.doi.org/10.1029/2021EA001861
http://dx.doi.org/10.1029/97JD03546
http://dx.doi.org/10.1175/JAS-D-12-0289.1
http://dx.doi.org/10.1175/MWR-D-13-00403.1
http://dx.doi.org/10.1175/1520-0469(1978)035<1536:REAACG>2.0.CO;2
http://dx.doi.org/10.1029/93JD01624
http://dx.doi.org/10.1029/2007JD009598
http://dx.doi.org/10.1175/1520-0493(2000)128<2687:TRBPAL>2.0.CO;2
http://dx.doi.org/10.1029/2011JD017123
http://dx.doi.org/10.3390/atmos10120796
http://dx.doi.org/10.1002/2015JD023470
http://dx.doi.org/10.1175/MWR-D-12-00258.1
http://dx.doi.org/10.1029/2020JD033735
http://dx.doi.org/10.1175/2009JTECHA1286.1


Atmosphere 2024, 15, 309 19 of 20

35. Schultz, C.J.; Petersen, W.A.; Carey, L.D. Preliminary Development and Evaluation of Lightning Jump Algorithms for the
Real-Time Detection of Severe Weather. J. Appl. Meteorol. Climatol. 2009, 48, 2543–2563. [CrossRef]

36. Schultz, C.J.; Carey, L.D.; Schultz, E.V.; Blakeslee, R.J. Insight into the Kinematic and Microphysical Processes that Control
Lightning Jumps. Weather. Forecast. 2015, 30, 1591–1621. [CrossRef]

37. Williams, E.R.; Boldi, B.; Matlin, A.; Weber, M.; Hodanish, S.; Sharp, D.; Goodman, S.; Raghavan, R.; Buechler, D. The behavior of
total lightning activity in severe Florida thunderstorms. Atmos. Res. 1999, 51, 245–265. [CrossRef]

38. Schultz, C.J.; Petersen, W.A.; Carey, L.D. Lightning and Severe Weather: A Comparison between Total and Cloud-to-Ground
Lightning Trends. Weather. Forecast. 2011, 26, 744–755. [CrossRef]

39. Williams, B.M.; Carey, L. Characteristics of Total Lightning within Tornadic vs. Non-tornadic QLCSs. In Proceedings of the 95th
American Meteorological Society Annual Meeting, Phoenix, AZ, USA, 4–8 January 2015.

40. Stough, S.M.; Carey, L.D.; Schultz, C.J.; Bitzer, P.M. Investigating the Relationship between Lightning and Mesocyclonic Rotation
in Supercell Thunderstorms. Weather. Forecast. 2017, 32, 2237–2259. [CrossRef]

41. Schultz, C.; Carey, L.D.; Schultz, E.V.; Blakeslee, R.J. Kinematic and microphysical significance of lightning jumps versus nonjump
increases in total flash rate. Weather. Forecast. 2017, 32, 275–288. [CrossRef] [PubMed]

42. Curtis, N.; Carey, L.; Schultz, C. An Analysis of the Lightning Jump Algorithm Using Geostationary Lightning Mapper Flashes.
In Proceedings of the International Lightning Detection Conference (ILDC 2018), Fort Lauderdale, FL, USA, 12–15 March 2018.

43. Murphy, M.J. Preliminary results from the inclusion of lightning type and polarity in the identification of severe storms. In
Proceedings of the 97th Annual Meeting of the American Meteorological Society, Seattle, WA, USA, 22–26 January 2017.

44. Murphy, M.J.; Said, R.K. Comparisons of Lightning Rates and Properties From the U.S. National Lightning Detection Network
(NLDN) and GLD360 With GOES-16 Geostationary Lightning Mapper and Advanced Baseline Imager Data. J. Geophys. Res.
Atmos. 2020, 125, e2019JD031172. [CrossRef]

45. Kosiba, K. The Propagation Evolution Rotation in Linear System (PERiLS) Project. Bull. Amer. Meteor. Soc. 2023.
46. Fuchs, B.R.; Bruning, E.C.; Rutledge, S.A.; Carey, L.D.; Krehbiel, P.R.; Rison, W. Climatological analyses of LMA data with an

open-source lightning flash-clustering algorithm. J. Geophys. Res. Atmos. 2016, 121, 8625–8648. [CrossRef]
47. Carey, L.D.; Murphy, M.J.; McCormick, T.L.; Demetriades, N.W.S. Lightning location relative to storm structure in a leading-line,

trailing-stratiform mesoscale convective system. J. Geophys. Res. Atmos. 2005, 110, D03105. [CrossRef]
48. Orville, R.E.; Henderson, R.W. Absolute Spectral Irradiance Measurements of Lightning from 375 to 880 nm. J. Atmos. Sci. 1984,

41, 3180–3187. [CrossRef]
49. Goodman, S.J.; Christian, H.J.; Rust, D. A Comparison of the optical pulse characteristics of intracloud and cloud-to-ground

lightning as observed above clouds. J. Appl. Meteorol. 1988, 27, 1369–1381. [CrossRef]
50. Christian, H.J.; Blakeslee, R.J.; Goodman, S.J. Lightning Imaging Sensor (LIS) for the Earth Observing System. In NASA Technical

Memorandum; NASA: Washington, DC, USA, 1992.
51. Walker, T.; Hill, J.; Jordan, D.; Uman, M.; Christian, H. Physical Characteristics of Triggered Lightning Determined by Optical

Spectroscopy; American Geophyiscal Union: Washington, DC, USA, 2010.
52. Edgington, S.; Tillier, C.; Anderson, M. Design, calibration, and on-orbit testing of the geostationary lightning mapper on the

GOES-R series weather satellite. In Proceedings of the International Conference on Space Optics—ICSO 2018, Chania, Greece,
9–12 October 2018; Sodnik, Z., Karafolas, N., Cugny, B., Eds.; International Society for Optics and Photonics, SPIE: Washington,
DC, USA, 2019; Volume 11180, pp. 1480–1494. [CrossRef]

53. Peterson, M. Research Applications for the Geostationary Lightning Mapper Operational Lightning Flash Data Product. J. Geophys.
Res. Atmos. 2019, 124, 10205–10231. [CrossRef]

54. Bateman, M.; Mach, D.; Stock, M. Further Investigation Into Detection Efficiency and False Alarm Rate for the Geostationary
Lightning Mappers Aboard GOES-16 and GOES-17. Earth Space Sci. 2021, 8, e2020EA001237. [CrossRef]

55. Koshak, W.; Mach, D.; Bateman, M.; Armstrong, P.; Virts, K. GOES-16 GLM Level 2 Data Full Validation Data Quality; NASA:
Washington, DC, USA, 2018.

56. Cummins, K.L. On the spatial and temporal variation of GLM flash detection and how to manage it. In Proceedings of the 10th
Conference on the Meteorological Application of Lightning Data, 101st Annual Meeting of the American Meteorological Society,
101st Annual Meeting of the American Meteorological Society, Virtual, 10–15 January 2021.

57. Liu, C.; Sloop, C.; Heckman, S. Application of Lightning in Predicting High Impact Weather; Earth Networks, Inc.: Germantown, MD,
USA, 2014.

58. Bitzer, P.M.; Burchfield, J.C.; Christian, H.J. A Bayesian Approach to Assess the Performance of Lightning Detection Systems.
J. Atmos. Ocean. Technol. 2016, 33, 563–578. [CrossRef]

59. Rudlosky, S. Evaluating Ground-Based Lightning Detection Networks using TRMM/LIS Observations. In Proceedings of the
23rd International Lightning Detection Conference & 5th International Lightning Meteorology Conference, Tucson, AZ, USA,
18–21 March 2014.

60. Biagi, C.J.; Cummins, K.L.; Kehoe, K.E.; Krider, E.P. National Lightning Detection Network (NLDN) performance in southern
Arizona, Texas, and Oklahoma in 2003–2004. J. Geophys. Res. Atmos. 2007, 112, D05208. [CrossRef]

61. Mallick, S.; Rakov, V.A.; Ngin, T.; Gamerota, W.R.; Pilkey, J.T.; Hill, J.D.; Uman, M.A.; Jordan, D.M.; Heckman, S.; Sloop, C.D.; et al.
An Update on Testing the Performance Characteristics of the ENTLN. In Proceedings of the International Conference on
Atmospheric Electricity, Norman, OK, USA, 9–13 June 2014.

http://dx.doi.org/10.1175/2009JAMC2237.1
http://dx.doi.org/10.1175/WAF-D-14-00147.1
http://dx.doi.org/10.1016/S0169-8095(99)00011-3
http://dx.doi.org/10.1175/WAF-D-10-05026.1
http://dx.doi.org/10.1175/WAF-D-17-0025.1
http://dx.doi.org/10.1175/WAF-D-15-0175.1
http://www.ncbi.nlm.nih.gov/pubmed/29158622
http://dx.doi.org/10.1029/2019JD031172
http://dx.doi.org/10.1002/2015JD024663
http://dx.doi.org/10.1029/2003JD004371
http://dx.doi.org/10.1175/1520-0469(1984)041<3180:ASIMOL>2.0.CO;2
http://dx.doi.org/10.1175/1520-0450(1988)027<1369:ACOTOP>2.0.CO;2
http://dx.doi.org/10.1117/12.2536063
http://dx.doi.org/10.1029/2019JD031054
http://dx.doi.org/10.1029/2020EA001237
http://dx.doi.org/10.1175/JTECH-D-15-0032.1
http://dx.doi.org/10.1029/2006JD007341


Atmosphere 2024, 15, 309 20 of 20

62. Virts, K.; Koshak, W.J. Monte Carlo Simulations for Evaluating the Accuracy of Geostationary Lightning Mapper Detection
Efficiency and False Alarm Rate Retrievals. J. Atmopsheric Ocean. Technol. 2023, 40, 219–235. [CrossRef]

63. Zhang, D.; Cummins, K.; Nag, A.; Murphy, M.; Bitzer, P. Evaluation of the National Lightning Detection Network Upgrade
Using the Lightning Imaging Sensor. In Proceedings of the International Lightning Detection Conference, Estoril, Portugal, 25–30
September 2016.

64. Bitzer, P.M.; Burchfield, J.C. Bayesian techniques to analyze and merge lightning locating system data. Geophys. Res. Lett. 2016,
43, 12,605–12.613. [CrossRef]

65. Marchand, M.; Hilburn, K.; Miller, S.D. Geostationary Lightning Mapper and Earth Networks Lightning Detection Over the
Contiguous United States and Dependence on Flash Characteristics. J. Geophys. Res. Atmos. 2019, 124, 11552–11567. [CrossRef]

66. Bruning, E.C.; Weiss, S.A.; Calhoun, K.M. Continuous variability in thunderstorm primary electrification and an evaluation of
inverted-polarity terminology. Atmos. Res. 2014, 135–136, 274–284. [CrossRef]

67. Lapierre, J.L.; Sonnenfeld, R.G.; Stock, M.; Krehbiel, P.R.; Edens, H.E.; Jensen, D. Expanding on the relationship between
continuing current and in-cloud leader growth. J. Geophys. Res. Atmos. 2017, 122, 4150–4164. [CrossRef]

68. Carey, L.D.; Buffalo, K.M. Environmental Control of Cloud-to-Ground Lightning Polarity in Severe Storms. Mon. Weather. Rev.
2007, 135, 1327–1353. [CrossRef]

69. Lang, T.J.; Rutledge, S.A.; Wiens, K.C. Origins of positive cloud-to-ground lightning flashes in the stratiform region of a mesoscale
convective system. Geophys. Res. Lett. 2004, 31, L10105. [CrossRef]

70. MacGorman, D.R.; Burgess, D.W. Positive Cloud-to-Ground Lightning in Tornadic Storms and Hailstorms. Mon. Weather. Rev.
1994, 122, 1671–1697. [CrossRef]

71. Wiens, K.C. Kinematic, Microphysical, and Electrical Structure and Evolution of Thunderstorms during the Severe Thunderstorm
Electrification and Precipitation Study (STEPS). Ph.D. Thesis, Colorado State University, Fort Collins, CO, USA, 2005.

72. Rudlosky, S.D.; Virts, K.S. Dual Geostationary Lightning Mapper Observations. Mon. Weather. Rev. 2021, 149, 979–998. [CrossRef]
73. Mach, D.M. Geostationary Lightning Mapper Clustering Algorithm Stability. J. Geophys. Res. Atmos. 2020, 125, e2019JD031900.

[CrossRef]
74. Franklin, V.M. An Evaluation of the Lightning Imaging Sensor with New Insights on the Discrimination of Lightning Flash and

Stroke Detectability. Master’s Thesis, University of Alabama in Huntsville, Huntsville, AL, USA, 2013.
75. Wu, T.; Yoshida, S.; Akiyama, Y.; Stock, M.; Ushio, T.; Kawasaki, Z. Preliminary breakdown of intracloud lightning: Initiation

altitude, propagation speed, pulse train characteristics, and step length estimation. J. Geophys. Res. Atmos. 2015, 120, 9071–9086.
[CrossRef]

76. Stough, S.M.; Carey, L.D.; Schultz, C.J.; Cecil, D.J. Supercell Thunderstorm Charge Structure Variability and Influences on Spatial
Lightning Flash Relationships with the Updraft. Montly Weather. Rev. 2022, 150, 843–861. [CrossRef]

77. DiGangi, E.; Lapierre, J.; Zhu, Y.; Stock, M. Investigating Storm Charge Distribution Trends with Intracloud Lightning Polarity
Data. In Proceedings of the International Lightning Detection Conference, Langkawi, Kedah, Malaysia, 12–15 June 2023.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1175/JTECH-D-22-0050.1
http://dx.doi.org/10.1002/2016GL071951
http://dx.doi.org/10.1029/2019JD031039
http://dx.doi.org/10.1016/j.atmosres.2012.10.009
http://dx.doi.org/10.1002/2016JD026189
http://dx.doi.org/10.1175/MWR3361.1
http://dx.doi.org/10.1029/2004GL019823
http://dx.doi.org/10.1175/1520-0493(1994)122<1671:PCTGLI>2.0.CO;2
http://dx.doi.org/10.1175/MWR-D-20-0242.1
http://dx.doi.org/10.1029/2019JD031900
http://dx.doi.org/10.1002/2015JD023546
http://dx.doi.org/10.1175/MWR-D-21-0071.1

	Introduction
	Materials and Methods
	Lightning Mapping Array (LMA)
	Geostationary Lightning Mapper (GLM)
	Earth Networks Total Lightning Network (ENTLN)
	National Lightning Detection Network (NLDN)
	Matching Between Networks
	Cases of Interest
	Case 1: 22 March 2022 PERiLS IOP1
	Case 2: 30 March 2022 PERiLS IOP2
	Case 3: 26 February 2023 Oklahoma

	Overall Comparison of Matching between Networks

	Results
	Example Snapshots for Inter-Comparison of Network Performance
	Example 1: 27 February 2023, 0315 UTC
	Example 2: 22 March 2022, 1900 UTC
	Example 3: 22 March 2022, 2150 UTC


	Discussion and Conclusions
	References

